[image: image1.png]Legacy

Aps

Legend

Scheduled One-nay Sych f User
105 and Group Mermberships

[s e

	

	SSO Integration
Basics Guide
for Navy Application Owners/Developers

	

	
	

Document Version: v 1.0

November 1, 2002
1. SSO Architecture Basics

1.1 SSO Architecture Similarities

The Single Sign On (SSO) products being considered for the Navy Enterprise Portal (NEP) have basic architectural similarities.

1) All SSO users are stored in a centralized LDAP directory.

2) All SSO security policies are stored in a centralized LDAP directory.

3) SSO web server plug-ins manage SSO access to participating application web servers. SSO web server plug-ins allow for granular control of specific URIs on the web server. Parts of the web server may be configured to remain unprotected by SSO.

4) A user’s SSO session is managed by means of a session ticket or token, specifically, a temporary, encrypted cookie sent to the user’s browser by the SSO product during the SSO session. When accessing protected resources (URLs), if the cookie is not present and decrypted properly, then access to that resource will be denied (or the user shall be required to re-authenticate).

1.2 SSO Process

[image: image5.jpg]

Figure 1 - Basic SSO Architecture and Process

1) User attempts to access a URI on web server protected by the SSO.
2) The SSO web server plug-in captures all requests of the web server. If the user attempts to access an unprotected URI, the access attempt is passed on to the web server’s authentication mechanism. If it is a protected URI, the SSO web server plug-in determines if the user has an active authenticated SSO ticket.

3) If the user does not already have an active authenticated SSO ticket, the SSO web server plug-in presents the user with a web form for required credentials (ID/password or certificate). User provides credentials.

4) User credentials are sent to the Access Server.

5) The user is authenticated against the Active Directory user store using the credentials provided.

6) Authenticated user data is returned to Access Server.

7) Authenticated user ID, and the URI of the protected resource are used by Access Server to determine the current policy in effect based on a query to the AD.

8) User Authorization data is returned to the Access Server.

9) User Authorization data is returned to the SSO web server plug-in.

10) SSO web server plug-in creates an encrypted session ticket (cookie) and returns it to the user through the web server.

11) New session ticket is presented to SSO web server plug-in, and user is allowed access to protected (Portal) resource.

12) SSO session ticket/Common Identity User ID passed in HTTP header to Portal.

13) Portal authorizes Common Identity User ID based on roles in its own registry.

14) SSO session ticket and Common Identity User ID are passed in HTTP header to back-end applications.

15) URIs for application resources are protected in an identical matter to the Portal URI. For consecutive authorizations, user authentication is not required (SSO), however, policies for the new URI must be added to the user’s ticket each time. This is done transparently to the user.

1.3 NEP Authentication and Authorization using SSO

It is important for Application Owners/Developers to know how their applications will be protected when participating in the SSO architecture. Authentication of a user’s identity and authorization of that user’s permissions can take place at multiple points in the SSO architecture. This provides the Application Owner various means to protect the application, based on need. Refer to Figure 2 to see the multiple levels of protection provided by the SSO and application.

[image: image2.png]User Entry Point
]

User
Entry
Point

Portal Access
Point
(S50 Entry Point)

Portal Permissions

Application
Access Point
(S50 Check Point)

Application
Permissions
Authorization

Authentication/Authorization
Actions

* Centralized Authentication
* Portal Access Authorization

* Roles Based “Access” Controls
(RBAC)

+ Defines viewable applications,
but ot true access autherization

* Re-Authentication (if necessary)
+ Application Access Authorization
(via centralized ACL)

+ Application Rights Authotization
(via internal DB)

* Potentially, Application Access
Authotization as well (to deny
access)

Authorization
Rules

Allow all
Authenticated users

Portal RBAC

Allow A1l Authenticated users
Individual o Group based
access

Role Based (LDAP Query)

IP based (whuildcards)

Flexible, based on HTTP
header values

+ Common Identity

+ Originating IP

* Others

TS WOReTOTTY

Figure 2 - Portal/SSO Defense in Depth

1.3.1 User Authentication

Authentication is the process by which a user (or service) is verified to be who (or what) they claim to be, based on some undisputed credentials.

Currently, the NEP SSO architecture shall utilize a user’s Common Identity User ID and password as authenticating credentials. In the future, DoD PKI X.509 identity certificates shall be the primary credentials used to authenticate users, with User ID and password available as a backup.

As shown in Figure 2, and described in Section 1.2, the main point of authentication for access to NEP resources is the Portal web server. The SSO web server plug-in protecting the Portal will enforce authentication of all users against the credentials maintained in the centralized Naval Global Directory Service (NGDS) Active Directory. Authorization of the user’s permissions within the Portal, and any connected SSO-enabled applications, will be based on this authenticated identity.

Alternately, if a user attempts to directly access an SSO-enabled application URL from outside of the Portal, the user will still be forced to authenticate against the NGDS Active Directory before being granted access to the application. This ensures that the SSO access management architecture cannot be bypassed by simply avoiding the Portal interface.

1.3.2 User Authorization

Authorization is the process used to determine the rights that shall be granted to a user (or service) based on the user’s authenticated identity.

A user will be re-authorized at many points in the architecture before being granted final access and permissions in an SSO-enabled application. These authorizations shall be transparent to the user, except in the case that it results in a denial of access to the application.

As seen in Figure 2, there are four points of authorization, each successively more granular in its control of what the user may access or what permissions the user is granted.

Portal Access – After a user is authenticated to the SSO, the user is authorized access to the Portal. The authorization rule used is Allow All Authenticated Users. Therefore, if a user cannot be authenticated against the Active Directory, the user will not gain access to the NEP.

Portal Permissions – Users who are granted access to the Portal are presented with a pre-set view of the NEP applications based on broad roles the user falls into. These roles include Military Personnel (Active, Reserve, and Retired), Civilian Personnel, Contractors, and Dependants. This particular view of the NEP applications actually does not grant a user any rights to access and application, and therefore does not truly constitute an authorization. Instead, it gives the user quick access to the library of applications that they should be most interested in. Users may attempt to access any of these applications, but may find that additional authorizations deny them access to the application.

Application Access – At the application, the SSO web server plug-in will attempt to authorize the user based on the Common Identity and the existence of the encrypted SSO cookie. If the user does not have a properly formatted SSO cookie, the user will be required to re-authenticate against the NGDS Active Directory.

It is technically possible for users to be authorized via a number of different rules. However, some means will be preferred because of supportability and security.

1) Allow All Authenticated Users – Identical to the security provided on the Portal itself. This rule shall allow all authenticated users of the Portal to gain access to the application.

2) Allow Certain Individuals or Groups – This is the preferred means to control authorization of access to the application. In general, the Application Owner shall be delegated control over a group in the NGDS Active Directory. The Application Owner will be allowed to add individual users (based on their Common Identity) or other groups to the Application Access Group. In this way, the Application Owner can retain control of access to their application.

3) Allow Access based on a specific Role – Roles in the NGDS Active Directory are loosely based on the attributes given to a user. In some cases these attributes may be controlled by the user, and therefore may improperly allow access to an application. Therefore, at this time, this form of access authorization control is not recommended for use.

4) Allow Access based on IP address – Access may be granted based on the IP address of the originating request (not the IP address of the Portal). Authorization will not be granted based on domain names (e.g., *.mil), because of the high possibility of spoofing. Because of the difficulty of maintaining lists of IP addresses, this form of access authorization control is not recommended for use.

Application Permissions – Once the SSO has verified that a user should have access to an application, the application itself must authorize the user’s permissions within the application. That is, the application must determine if the user is an administrator, a power user, or simply a guest. The application will receive numerous datum in the HTTP header that may be utilized to apply authorizations. The most powerful of these is the Common Identity User ID. The remainder of this document is written in respects to using the Common Identity User ID as the means to authorize a user within the application. Other possibilities exist, and it is up to the Application Owner and the DAA to determine if they are appropriate for use as an authorization method.

Following the processes defined in Sections 1.2 and 1.3, the Application Owner/Developer can be assured of the following things:

1) All users that gain access to SSO protected URLs on the Application web server have been successfully authenticated against the centralized NGDS Active Directory user store based on the user’s Common Identity User ID.

2) A hacker cannot impersonate a user’s Common Identity User ID, because SSO authentication/authorization includes creation and encryption of a properly formatted SSO session cookie, using a secret key shared only between the SSO and its web server plug-ins. If this cookie is not present in the URL request, the user is required to re-authenticate.

3) The Application Owner has final control over all access to the application. This may be based on access controls provided by the SSO (but managed by the Application Owner), or access controls put in place on the Application itself.

2. Application SSO Integration Checklist

· Application Owner/Developer prepares for NEP SSO integration by modifying the application’s authentication mechanisms:

· The Application should attempt to authorize SSO users access to the application by trusting and interpreting an HTTP header variable populated by the SSO web server plug-in. An HTTP header variable will contain the Common Identity User ID for the user requesting access to the application.

· The Application should trust all authenticated and authorized Common Identity User IDs. This will require that the application replace its current user IDs with the Common Identity User IDs, or, perform a mapping of the Common Identity User IDs to the legacy user IDs.

· Application Owner/Developer provides the SSO Admin with information describing the application to be integrated into the SSO domain. (See APPENDIX B: SSO Integration Requirements Collection Sheet)

· SSO Admin establishes an SSO web server plug-in configuration object in the SSO domain.

· SSO Admin creates an application access group in Active Directory that shall contain the users that will be granted access to the application. The SSO Admin delegates administrative rights over this group to the Application Owner. The SSO Admin will also configure a policy protecting the Application resources. The application access group is given rights to access the Application.

· SSO Admin provides the configuration data for the SSO web server plug-in installation to the Application Owner/Developer.

· Application Owner/Developer installs the SSO web server plug-in on the application’s web server. This installation will require the use of an additional DoD PKI certificate.

3. Application SSO Integration CONOPs

3.1 Perform Application Authentication/Authorization Code Modifications

To prepare for integration with the NEP SSO, the Application Developer must modify application code to meet these requirements:

1) Trust the NEP SSO to provide all authentication services for the application. Authentication will become centralized for all applications participating in SSO. The SSO will also manage access authorizations. However, the application must continue to authorize user rights within the application.

2) Read and parse the incoming HTTP header variable to determine the Common Identity User ID of the user who has been authenticated and authorized access to the application.

3) Programmatically map Common Identity User IDs (from the HTTP header) to the application’s existing usernames/login IDs so that incoming authenticated Common Identity User IDs are authorized with the application rights given to their “legacy” username/login ID. Alternately, the Application Developer may outright replace existing application usernames/login IDs with the Common Identity User IDs. This avoids mapping issues, but is not a solution for all platforms, specifically, those that do not support 20 character user IDs. Mapping of user IDs can be performed programmatically, as shown in the examples in section 4 and the Appendices.

3.2 Describe the Application to be Integrated

The Application Owner/Developer shall provide the centralized SSO Admin with the IP address, fully qualified domain name, and port of the web server hosting the application to be integrated into the SSO domain.

The Application Owner shall also specify the URL(s) that should be protected by the SSO. These are the only URLs on the web server that will be protected by the SSO, and therefore the Application Owner/Developer should be careful to specify all of the URLs that provide access to the application (including all backdoors). The Application Owner/Developer should also be careful to not specify URLs for other resources residing on the web server, as the SSO product would protect these as well.

APPENDIX B: SSO Integration Requirements Collection Sheet provides a checklist of all of the information required by the SSO Admin.

3.3 Register the Application in the NEP SSO Environment

Using the data returned from the Application Owner/Developer, the SSO Administrator shall configure an instance of an SSO web server plug-in in the SSO product. This step will establish settings and names for the SSO web server plug-in that will be installed on the application’s web server.

At this time, the SSO Admin will also create an application access group in Active Directory that will contain the set of users who will be granted access to the application. An administrator, specified by the Application Owner, will be assigned delegated administration rights to change the membership of the group. In this way, the Application Owner will retain control over access control for their application.

Finally, the SSO Admin will provide the following data to the Application Owner/Developer:

a)
Transport encryption used for the SSO connection. The SSO will require that transport security be Certificate-based, over SSL. This will require that the application’s web server have a DoD PKI certificate installed. The SSO web server plug-in will also require a separate DoD PKI certificate from the web server itself.

b)
The ID given to the SSO web server plug-in by the SSO Admin.

c)
The password given to the SSO web server plug-in by the SSO Admin.

d)
The ID given to the Access Server (by the SSO Admin) that the SSO web server plug-in will communicate with.

e)
The hostname of the Access Server that the SSO web server plug-in will communicate with.

f)
The port of the Access Server that the SSO web server plug-in will communicate with.

3.4 Install SSO web server plug-in and Institute SSO

Using data provided by the SSO Admin, along with the SSO web plug-in installation files, the Application Developer shall install the SSO web plug-in to the web server.

Installing an SSO web plug-in will have the following affects on the Application Web Server:

a)
An HTTP filter (implemented as an ISAPI filter in Microsoft IIS) will be applied to the web server. This filter will capture all requests of the web server, verify whether the requested URLs are protected by the SSO, and perform the authentication/authorization processes dictated by the SSO policies. While all requests are filtered, the SSO only protects those URLs that the Application Owner/Developer indicated.

b)
The default authentication policy on the web server is set to “Anonymous Access” only. The “Anonymous Access” only setting is required so that web server native authentication does not interfere with passing SSO credentials to the protected resources. By using Virtual Directories (on IIS, for example), resource URLs that are not to be protected by the SSO can continue to use web server-based authentication.

Installing the SSO web server plug-in will put into effect the SSO policies established by the Application Owner/Developer. This must first be performed in a test environment to ensure that no legitimate users are denied access to important resources because of the implementation of SSO.

4. Application SSO Integration Coding Examples

This section describes a roadmap that may be followed in integrating a custom application into the NEP SSO environment.

4.1 Application “Legacy” Authentication/Authorization Mechanism

The process described herein assumes:

1) That the application already performs authentication of user identities and authorization of user rights against an internal user database (that the developer can modify).

2) That each user has only one user account in the application. Applications with multiple accounts per user (presumably with differing rights) will encounter mapping issues with the mechanism described below.

3) Authentication is performed by a URI addressable login page or script, e.g., http://server/application/login.script
4) Access to all of the application’s protected resources (URIs) enforce authentication by the login script. That is, there is no backdoor means to get to an application resource without being authenticated by the login script.

[image: image3.png]hitps:Hiserveriapplicationy.

Iogin script
resource_L it
resource_2 il
resource_n il

Legacy User ID_| Resource Rights
jioe admin
john_doe read
doe_jim el
jane_doe write

Figure 3 - Application "Legacy" Authentication/Authorization Configuration

The login script retrieves the user’s credentials (most likely user ID and password), verifies them against the internal user database, and authorizes the user access to specific resources based on the user’s rights (also in the internal database).

4.2 SSO Authentication/Authorization Modifications

Modifying a legacy authentication/authorization mechanism of this type requires modification to the internal user database, and addition of at least one script to read and interpret the SSO header information.

1) Add a new field to the internal user database. This field will contain the users’ Common Identity User ID. In the examples below, this field is called SSO_User_ID.

2) Create a new SSO login page or script, e.g., http://server/application/sso_login.script, that will be used to read the user’s Common Identity User ID out of the HTTP header and authorize SSO users with the appropriate rights.

3) Create a new ID Mapping script (or subroutine to the SSO login script) that will automatically perform a mapping between the user’s legacy user ID and the Common Identity User ID.

[image: image4.png]hitps:Hiserveriapplicationy.

Iogin script
ss0_login script
ID_tnap. script
resource_L il
resource_2 il
resource_n il

Legacy User ID | SSO_ User ID | Resource Rights|
jioe jarmes doe. admin
john_doe read
doe_jim jarmes x doe read
jane_doe write

Figure 4 – Application SSO Authentication/Authorization Configuration

Pseudo-code for sso_login.script:

Read HTTP header variable for Common ID

If Common ID is found in SSO_User_ID database field then

Authorize user Resource Rights

Else

Retain Common ID

Execute ID Mapping script (or subroutine)

Pseudo-code for ID_map.script:

Present a user authentication form identical to login.script

On Submit, If Legacy ID is found in Legacy_User_ID database field then

Authorize user Resource Rights

Write Common ID to SSO_User_ID database field

Else

Deny Access

The new sso_login.script shall become the URL that is used by the NEP for SSO logins. It will first attempt to authorize users based on their Common Identity User ID. If this is not possible because the application does not have a record of the user’s Common Identity User ID, then the users will be required to authenticate to the application using their “legacy” application user ID. However, after that initial login, their Common Identity User ID will be captured by the application, and will be stored so that future SSO logins will not require re-authentication.

ColdFusion Application Example

To integrate SSO into a Cold Fusion application, follow these steps:

1. Make a copy of your first login page (e.g., index.cfm or login.cfm). Call it “sso.cfm”.

2. Add a new field to the users table in your database and name it “SSOUserName”. This field must accept NULL values.

3. Add the following lines of code to the sso.cfm page:

<!--- Set Session for the SSO --->

<CFSET session.userName = CGI.HTTP_REMOTE_USER>

<!--- Check and see if the user exists in the your application users table --->

<cfquery name="CheckUser" datasource="<YourDSN>" dbtype="ODBC">

SELECT *

FROM <YourUsersTable>

WHERE SSOUserName = '#session.userName#'

AND SSOUserName NOT ‘’

</cfquery>

<cfif "#CheckUser.SSOUserName#" Is NOT "">

<!--- Add Code to Authenticate Automatically using the information in your Users table relating to this particular user --->

<cfelse>

<!--- Your Login form goes in here. Include a hidden tag as follows:

<input type=hidden name=”SSOUserName” value=”<cfoutput>#session.userName#</cfoutput>”>
 --->

</cfif>

4. Post the form in step 3 to a page that authenticates and Inserts the value of SSOUserName into the SSOUserName field for the same user. This will guarantee that the user will not see the login page again as long as he/she is accessing the application through the portal.

APPENDIX A: SSO Integration Requirements Collection Sheet

A) Application Name:

B) Application Acronym:

C) Application Web Server IP Address. (Specify all IP addresses if the application uses load balancing):

D) Application Web Server Fully Qualified Domain Name (FQDN):

E) Application Web Server Port #:

F) Does the server have a DoD PKI server certificate?:

G) SSO Protected URLs (please use * wildcards, e.g., /* or /home/*):

H) Application Manager POCs:

(These users will be delegated administration of the Application Access Group that grants access to the Application via the SSO. These users will also be able to further delegate administration of these groups. For shipboard applications, these users must be local to the ship where the application resides.)

Name:

Telephone Number:

E-mail Address:

